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Abstract. The various dynamical models for fragment formation in nuclear collisions are discussed in
order to bring out their relative advantages and shortcomings. After discussing the general requirements
for dynamical models that aim to describe fragment formation, we consider the various mean-field models
that incorporate fluctuations and then turn to models based on molecular dynamics.

PACS. 24.10.-i Nuclear reaction models and methods – 05.60.Gg Quantum transport – 24.60.Ky Fluctu-
ation phenomena – 25.70.Pq Multifragment emission and correlations

1 Introduction

Nuclear collisions in the medium-energy regime (from
several tens to several hundreds MeV/nucleon) typically
yield several intermediate-mass fragments (IMFs) (see
Tamain [1]). Thus, at relatively low energies dissipative
binary reactions may create IMFs at midrapidity, while
higher-energy central collisions create expanding systems
that produce clusters copiously; and peripheral collisions
produce excited projectile-like fragments that multifrag-
ment. The IMFs typically carry a major part (∼ 50%) of
the nucleons involved.

Since the fragments are formed in dynamical reactions
where equilibrium is not guaranteed a priori, there is a
need for developing microscopic dynamical descriptions
for fragment formation. This poses a significant theoretical
challenge because of the basic quantal nature of the many-
body nuclear system. Although it is possible to derive such
models by truncating a hierarchy of quantum many-body
equations, it is difficult to ensure that the error would
remain small throughout the rather long duration of frag-
mentation reactions. Therefore, most of the currently em-
ployed models have been developed by performing certain
drastic simplifications while seeking to retain a quantita-
tively useful description for those aspects that are deemed
to be of most interest. Consequently, models with different
characteristics have been developed and applied to frag-
mentation reactions with reasonable successes in specific
cases.

The purpose of this paper is to summarize the main
requirements for models that aim to describe fragment
formation and to elucidate their relative merits and short-
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comings. First, sect. 2 discusses those model features that
are of largest importance. Then, within that framework,
we discuss in sect. 3 models that have been developed on
the basis of mean-field theory, while sect. 4 covers those
that involve molecular dynamics.

Since this paper focuses on fragment formation, we
do not intend to evaluate the overall utility of individual
models. Indeed, treatments that do not seek to describe
fragment formation, such as the nuclear Boltzmann equa-
tion (see Fuchs and Wolter [2]) are not addressed here,
even if they may have proven to be very important gener-
ally for the study of heavy-ion reactions. (An early guide
to microscopic models for intermediate-energy nuclear col-
lisions was given in ref. [3].) Neither does this paper cover
the statistical models for fragment formation (see Botvina
and Mishustin [4]) which provide us with a powerful tool
for understanding fragmentation.

2 General requirements

We discuss here the general features that are required by
any dynamical model aiming to describe nuclear fragmen-
tation.

2.1 General framework for the time evolution

Ideally, any such model should be derivable from the un-
derlying quantum many-body description by means of
well-defined approximations. Most of the models for nu-
clear dynamics are based on the mean-field picture, ex-
emplified by the time-dependent Hartree-Fock (TDHF)
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Fig. 1. A schematic picture of a fragmentation reaction in
which a given initial channel may develop into many different
fragmentation channels during the dynamical evolution.

treatment or its semiclassical analogue, the Vlasov equa-
tion. However, the direct two-nucleon collisions grow in-
creasingly important when the collision energy reaches
and surpasses the Fermi energy, as the Pauli exclusion
principle becomes ever less effective in blocking the two-
nucleon collisions. Therefore, the models should incorpo-
rate both single-particle motion in a mean field and Pauli-
suppressed two-nucleon collisions. This is indeed the case
for most of the models discussed here.

2.2 Dynamical bifurcations

The most important special challenge associated with
fragmentation is the occurrence of dynamical bifurcations,
the feature that a given initial configuration may lead
to many different fragmentations, as illustrated in fig. 1.
Since the number of final channels is huge, even if only the
most important fragmentations are considered, a standard
coupled-channel treatment would be practically impossi-
ble. On the other hand, this very feature makes it natural
to employ concepts and methods from transport theory.
Consequently, most models involve some stochastic agent
as a simple way to produce spontaneous fluctuations and
the associated trajectory branchings.

2.3 Basic quantum statistics

Any quantitatively useful model of nuclear systems must
take account of the basic quantum-statistical feature that
causes Pauli blocking and endows the nucleons with Fermi
motion. Therefore, the initial nucleon momenta are usu-
ally sampled from a Fermi distribution, even if the spe-
cific model does not inherently contain such a feature.
This ensures that the one-body phase-space density is rea-
sonably consistent with the corresponding single-nucleon
wave functions. Furthermore, the final states of the di-
rect two-body collisions are usually suppressed by suitable

Pauli-blocking factors, thus helping to prevent the nucle-
ons to revert to the Maxwell-Boltzmann form character-
istic of classical systems. Even though the various models
tend to include these basic features, the specific manner in
which this is actually done varies greatly from one model
to another.

2.4 Macroscopic nuclear properties

The dynamical models should have stationary solutions
that reproduce the most important macroscopic nuclear
properties, such as density distributions and binding ener-
gies, whereas shell and pairing effects are not very impor-
tant because the produced fragments are usually excited
by several MeV/nucleon. This requirement can be met if
the model yields proper values of the nuclear saturation
density and the associated binding energy (including its
isospin dependence), together with especially the nuclear
surface tension. It is thus important that these key quan-
tities be known for the various models.

2.5 Thermal nuclear properties

Because of the complexity of the fragmentation process,
statistical features play a large role in determining the
relative fragment yields. It is therefore quantitatively im-
portant that the nuclear level densities, as reflected in the
specific heat, have realistic magnitudes. In particular, in a
quantum system the excitation energy grows quadratically
with temperature, E∗ = aT 2, while the relation tends to
be linear in a classical system. The desirability of this
characteristic property poses a significant problem for the
dynamical models and, as we shall discuss, most models
are inadequate in this particular regard.

2.6 Interactions

It is preferable that the models contain only a minimal
number of parameters. In fact, the mean-field Hamiltonian
should in principle be known from static nuclear proper-
ties and thus not be subject to adjustment. It is in the
context of fragment production especially important that
the employed interaction yields a liquid-gas phase transi-
tion in uniform matter.

With regard to the residual two-body interaction, it
is most often represented by means of differential scatter-
ing cross-section which may, in principle, be modified by
the local density and temperature. Although such medium
modifications might be calculable, they may also be taken
as somewhat adjustable.

In any case, both the long-range interaction responsi-
ble for the mean field and the residual interaction causing
the collisions should already have been fixed from applica-
tions that do not involve fragmentation. So, consequently,
there should ideally be no new parameters associated with
the treatment of fragmentation processes.
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2.7 Particle emission from hot nuclei

The fragments produced after the violent stage of the re-
actions are still excited by typically several MeV/nucleon.
Such fragments de-excite by light-particle emission over
a time scale that is very long in comparison with that of
the collision. Although it would be impractical to propa-
gate the dynamical models for such long times, it would
still be desirable that the models in principle describe the
de-excitation processes. However, this is generally not the
case, in large part because of the rather rough charac-
ter of the dynamical models relative to the more refined
treatments required for such emission processes. Indeed,
the proper description of particle emission from hot nuclei
usually requires a quantum-mechanical treatment. There-
fore, when particle-stable fragments are needed, it is nec-
essary to apply suitable de-excitation treatments to each
of the (pre)fragments formed in the course of the collision.

2.8 Correlations and fragmentation mechanisms

It is desirable that the models can describe many-body
correlations beyond those of the mean-field description.
This is particularly important for a proper description of
light fragments, such as alpha particles. One of the most
important advantages of treatments based on molecular
dynamics is that such correlations are included automat-
ically (though not necessarily correctly, of course). It is
important to recognize that one-body models also con-
tain non-trivial correlation features when augmented by
a stochastic agency that produces an entire ensemble of
one-body systems from a single initial configuration. Thus,
while the mean-field models may not be suitable for the
description of very light fragments, they may be quite rea-
sonable for fragments that lend themselves to a mean-field
description, such as typical IMFs.

3 Mean-field models with fluctuations

Significant advances in our understanding of nuclear dy-
namics have been achieved within the mean-field frame-
work. Just as the Hartree-Fock treatment provides a useful
starting point for the discussion of static nuclear proper-
ties, its time-dependent version, TDHF, presents a good
conceptual starting point for the treatment of nuclear dy-
namics. An early study of multifragmentation within the
TDHF framework was made by Knoll and Strack [5], who
considered the evolution of individual Slater determinants
that had been sampled from a statistical ensemble repre-
senting a hot source.

The main shortcoming of pure mean-field treatments
is the omission of the short-range residual interaction. An
attempt to include this important physical ingredient is
presented by the stochastic TDHF model [6] in which
the many-body system continually jumps from one Slater
determinant to another. Though conceptually appealing,
this approach has not yet been developed into a practical
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Fig. 2. Characterization of dynamical models. The various
semiclassical treatments of microscopic nuclear dynamics can
be characterized by the manner in which the single-particle
phase-space density is being propagated from one time step
to the next. In the Vlasov treatment, the particles experience
only the self-consistent effective field, leading to a single dy-
namical history f(r, p, t). At the Boltzmann level, the various
possible outcomes of the residual collisions are being averaged
at each step, leading then to a different but still single dynam-
ical trajectory. Finally, the Boltzmann-Langevin model allows
the various stochastic collision outcomes to develop indepen-
dently, thus leading to a continual trajectory branching and a
corresponding ensemble of histories.

tool (but it provides a basis for deriving the Boltzmann-
Langevin treatment discussed below).

Indeed, the residual interaction is more readily in-
cluded within the framework of semi-classical descrip-
tions of the Nordheim type [7], often referred to as

Boltzmann-Ühling-Uhlenbeck (BUU) or Vlasov-Ühling-
Uhlenbeck models, in which the collisionless mean-field
evolution is augmented by a Pauli-blocked Boltzmann col-
lision term. There are various techniques for solving the
nuclear Boltzmann equation. One common approach in-
troduces a (usually large) number of pseudo-particles for
each nucleon present, N , with correspondingly reduced
interacting cross-sections. This method makes it possible
to achieve an arbitrarily fine coverage of phase space and,
in principle, the resulting solution approaches the exact
solution as N is increased. However, it requires a fairly
cumbersome programming to prevent the computational
task from increasing quadratically with N . Therefore, it
is often preferable to use the parallel-ensemble method, in
which N individual A-body systems are treated in parallel
in a common mean field that is obtained by averaging, at
each time, over the N systems (see fig. 2). This treatment
retains some correlation, so although it does not converge
to the Boltzmann solution it may well present a more use-
ful model.

In the standard Boltzmann treatment, only the av-
erage effect of the collisions between the particles is in-
cluded, thus yielding a deterministic evolution of the one-



112 The European Physical Journal A

particle phase-space density f(r,p) (see fig. 2). While this
simplification may be suitable in many physical scenarios
in which the macroscopic dynamics is stable (such as the
early stages of a nuclear collision when the system is hot
and compressed), it is inadequate for processes involving
instabilities, bifurcations, or chaos. In particular, if the
combined expansion and cooling brings the system into
the spinodal zone of the phase diagram, it is essential to
admit the occurrence of fluctuations and allow their sub-
sequent self-consistent development.

Various attempts to overcome this problem have been
made. On the more formal side, transport theory was in-
voked to treat the effect of many-body correlations as a
stochastic process and thus derive a transport equation
for the one-particle phase-space density f(r,p) [8–10]. In
particular, in ref. [10] the general transport equation was
reduced to coupled equations for the mean evolution of
f(r,p) and its fluctuations around this average trajec-
tory. The evolution is then determined by the transport
coefficients, namely the drift coefficients V [f ](r,p) that
govern the average change of f(r,p) (and is given by
the usual Boltzmann equation) and the diffusion coeffi-
cients D[f ](r,p; r′,p′) governing the correlation between
changes at two different phase-space locations. These co-
efficients are given in terms of the differential cross-section
and this fundamental relationship ensures that they sat-
isfy the fluctuation-dissipation theorem. While this ap-
proach yields a more exhaustive description, it is applica-
ble only when the dynamics is macroscopically stable so
all dynamical histories remain fairly similar.

However, in many situations of actual interest in
heavy-ion physics, such as multifragmentation processes,
the dynamical trajectories branch into configurations that
are qualitatively different, as illustrated in fig. 2. It is
therefore necessary to devise methods that can admit and
propagate arbitrary fluctuations. This need has led to
the development of the nuclear Boltzmann-Langevin (BL)
model which is briefly described below.

3.1 Boltzmann-Langevin model

The Boltzmann-Langevin equation of motion for f(r,p)
can be written on a condensed form as [11,12]

ḟ ≡
∂f

∂t
− {h[f ], f} = C[f ] ≡ C̄[f ] + δC[f ] . (1)

Here the mean-field evolution of f(r,p) on the left is gov-
erned by the effective one-body Hamiltonian h[f ](r,p),
which depends self-consistently on f(r,p). The collision
term C[f ] on the right represents the effect of the two-
body collisions and is therefore stochastic in nature. As
such, it can be separated into its average, C̄[f ], which
is the term retained in the standard Boltzmann equa-
tion, and its fluctuating part, δC[f ]. The two parts can
be expressed in terms of the elementary collision process
p1p2 → p′

1p
′

2, for which the expected number of occur-
rences within a small time interval, ν̄, is equal to the
associated variance σ2

ν , as in a standard random walk.

This fundamental relationship leads to the fluctuation-
dissipation theorem.

After it had been demonstrated [11] that the fluctu-
ating collision term C[f ] produces the correct quantum-
statistical equilibrium fluctuations and correlations in a
uniform gas, the transport theory was turned into a practi-
cal tool by the development of a numerical method for the
direct simulation of the stochastic part δC[f ] [12]. With
this model, the dynamical clusterization in the presence of
instabilities was then addressed [13] and explicit numeri-
cal studies were made for two-dimensional matter in the
phase-space region of spinodal instability. The fluctuating
part of the collision term acts as a source of irregularities
in the density which may then be amplified by the self-
consistent mean field. The corresponding dispersion rela-
tion (the growth rate γk = 1/tk as a function of the wave
number of the distortion) was extracted from the numer-
ical simulations and shown to exhibit a maximum which
identifies the characteristic length scale for the clusteriza-
tion, as reflected in the Fourier transform of the spatial
density. A more detailed treatment of the linear response
in stochastic mean-field theories and the onset of instabil-
ities was subsequently made [14].

It thus appears that the Boltzmann-Langevin model
offers a suitable one-body framework for the study of un-
stable nuclear dynamics, such as fragmentation processes.
Nevertheless, it appears that an accurate description of
the agitation of unstable modes in nuclear matter gener-
ally requires the inclusion of memory time effects resulting
from the basic quantal nature of the system [15].

Furthermore, the numerical treatment of the fluctuat-
ing collision term presents a formidable challenge and is
not yet feasible in three dimensions. Therefore a number
of approximate treatments have been developed. However,
typically, these approaches introduce the fluctuations by
fiat in a manner that is inconsistent with the general re-
laxation properties of the one-body density, as expressed
through the fluctuation-dissipation theorem. We discuss
those various approaches in the following.

3.2 Brownian one-body dynamics

A powerful approximate treatment of the BL model was
obtained by approximating the effect of the fluctuating
part of the collision term, δC, by that of a suitable stochas-
tic one-body potential, δU(r, t),

δC[f ]→ −δF [f ] ·
∂f

∂p
, (2)

with the Brownian force δF ≡ ∂δU/∂r being tuned at
each point in time and space to ensure that the dynamics
of important collective modes emulates the results of the
complete Boltzmann-Langevin model [16].

In the resulting Brownian one-body (BOB) model for
nuclear dynamics, the stochastic force is adjusted to en-
sure the correct growth of the fastest-growing unstable
spinodal mode, as obtained by making a local-density ap-
proximation. Since the local adjustment of the Brownian
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force can be made on the basis of simple analytical approx-
imations [17,18], the BOB scheme can be implemented
by making a relatively straightforward modification of a
standard BUU code [16], thus providing a powerful tool
for studies of fragment formation.

The BOB model was subsequently applied to dynami-
cal scenarios where spinodal fragmentation occurs. One
study considered the multifragmentation of an initially
compressed gold nucleus [19] and found, in accordance
with an earlier BUU-based study [20], that the system
quickly expands into a hollow and unstable configuration,
where the irregularities resulting from the stochastic force
are then amplified by the self-consistent mean field, result-
ing in several intermediate-mass fragments, together with
a large number of unbound nucleons.

It thus appears that the stochastic mean-field model
framework is suitable for the treatment of nuclear frag-
mentation dynamics, provided that the self-consistent
propagation of fluctuations has been suitably incorpo-
rated.

3.3 Other approximate Boltzmann-Langevin methods

An attempt to introduce spontaneous fluctuations in
a practically realizable manner was made by Bauer et
al. [21]. Their method can be implemented relatively eas-
ily into standard BUU codes that use the pseudo-particle
method of solution and it consists essentially in forc-
ing similar two-body collisions to occur for neighboring
pseudo-particles so that effectively two entire nucleons
are involved in each particular collision event. Employing
an idealized two-dimensional nucleon gas as a test case,
Chapelle et al. [22] examined this intuitively appealing
method. They found that it is able to produce fluctua-
tions of the correct general magnitude, provided that a
suitable coarse graining of the phase space is performed,
and that these display some of the correlation features
expected from the basic characteristics of the two-body
collision process. These features can be improved by suit-
able tuning of the phase-space metric (the concept of a
distance in phase space is required for the selection of the
“neighboring” pseudo-particles). However, for any tuning,
the detailed momentum dependence of the variance in
phase-space occupancy deviates significantly from what is
dictated by quantum statistics. Therefore this simple pre-
scription may be unsuitable for problems in which these
properties are important.

On a more formal basis, Ayik and Gregoire [9] pro-
posed an approximate method for numerical implemen-
tation of the Boltzmann-Langevin theory. The method
reduces the Boltzmann-Langevin equation for the micro-
scopic one-body phase-space density f(r,p) to stochastic
equations for a set of macroscopic variables, namely the
local or global quadrupole moment of the momentum dis-
tribution. A random change of the quadrupole moment is
then made at each time step and a suitable stretching of
f(r,p) is performed subsequently in order to reconstruct
the entire phase-space density. This method was also ex-
amined by in ref. [22] and, although several variations

of the proposed scheme were examined, it was generally
found that the results were far from satisfactory, since the
resulting correlations associated with the fluctuating one-
body density will tend to reflect the symmetries and other
characteristics of the employed reconstruction procedure
rather than those of the underlying physical fluctuations.
Therefore this method appears unsuitable for calculating
quantities that depend sensitively on the details of the
momentum distribution.

For the purpose of addressing catastrophic phenomena
in nuclear dynamics, such as multifragmentation, Colonna
et al. [23] explored the possibility of simulating the
stochastic part of the collision integral in the Boltzmann-
Langevin model by the numerical noise σk(0) associated
with the finite number of pseudo-particles N employed in
the ordinary BUU treatment. This idea is based on the
observation that for large times, t À tk, the fluctuation
of density undulations of a given wave number k is given
by σ2

k(t) = Dktke
2t/tν in the Boltzmann-Langevin treat-

ment, whereas it is σ2
k(t) = (Dktk/N +σk(0))e

2t/tν in the
BUU pseudo-particle treatment. Since σk(0) also scales as
1/N , the matching of those two asymptotic fluctuations
yields a relation determining the value of N . For ideal-
ized two-dimensional matter, which presents a suitable
test case, as it is here practical to simulate the Boltzmann-
Langevin equation directly, they demonstrated thatN can
be adjusted so that the corresponding BUU calculation
yields a good reproduction of the spontaneous clusteriza-
tion occurring inside the spinodal region. This approxi-
mate method may therefore provide a relatively easy way
to introduce meaningful fluctuations in simulations of un-
stable nuclear dynamics. This method was subsequently
extended to 3D nuclear matter, allowing the direct ex-
traction of the growth times tk of the unstable modes and
the associated diffusion coefficients Dk [24].

Guarnera et al. [25] studied the spinodal fragmentation
of a hot and dilute nucleus by first expanding the system
into a spinodally unstable configuration and then adding a
stochastic density fluctuation that is carefully tuned to re-
flect the degree of fluctuation in the most unstable mode,
as determined by the corresponding linear-response analy-
sis of the unstable sphere. They found that the early clus-
terization appears to be dominated by unstable modes
whose spatial structure is similar to the fastest growing
spinodal modes in infinite matter at similar density and
temperature. They followed the development of the insta-
bilities until multifragmentation had occurred and then
made an analysis of the resulting fragment size distribu-
tion. As expected from the fact that only a few modes
dominate, the clusterization pattern has a large degree of
regularity which in turn favors breakup into fragments of
nearly equal size, with a corresponding paucity of small
clusters.

Subsequently, Colonna et al. [26] introduced a method
that roughly approximates the Boltzmann-Langevin
model by adding a suitable noise to the collision term
in the usual BUU treatment. The noise employed corre-
sponds to the thermal fluctuation in the local phase-space
occupancy, σ2

f (r,p) = f(1− f), where f(r,p) is the local
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Fermi-Dirac equilibrium distribution. By performing such
a local momentum redistribution at suitable intervals in
the course of the evolution, the inherently stochastic na-
ture of the two-body collision processes is mimicked. The
method has the advantage that it is readily tractable and
it applies equally well to both stable and unstable parts of
the phase diagram. The method has been applied to mul-
tifragmentation in central collisions in the Fermi energy
domain [27], showing spinodal decomposition in expand-
ing systems.

A different approach was taken by Matera and Del-
lafiore [28] who applied white noise to a Vlasov system.
The noise term was determined self-consistently by invok-
ing the fluctuation-dissipation theorem and, within the
linear approximation, the time evolution of the density
fluctuations was found to be given by the same closed
form as was found in ref. [14]. The authors showed that
while a white-noise form of the stochastic field is in general
not consistent with the fluctuation-dissipation theorem, it
may provide a good approximation when the free response
function is sufficiently peaked.

It is important to note that all of the methods de-
scribed above employ an ad hoc procedure to generate
fluctuations. Therefore the microscopic structure in phase
space of the produced correlations is typically very differ-
ent from the prediction of the Boltzmann-Langevin model.
However, as stressed first in ref. [23], in situations where
the dynamics is dominated by only a few modes (such
as the fastest growing spinodal modes) it may suffice to
require equivalence with the exact Boltzmann-Langevin
approach for only those few degrees of freedom. As a con-
sequence, some of the approaches [23–25] have carefully
designed the fluctuation source so as to mimic the effects
of the stochastic Boltzmann-Langevin term on the dynam-
ics of the most unstable modes and the main dynamics of
the spinodal decomposition can then be simulated.

Several studies aimed directly at cases of experimental
interest [25,29,30] have found that central collisions of Xe
and Sn should lead to spinodal fragmentation and display
corresponding correlations in the resulting IMF sizes (see
Borderie and Désesequelles [31]). This system has been in-
vestigated experimentally at INDRA [32] and a signal in
quantitatively good agreement with the transport calcu-
lations was indeed observed. A comprehensive review of
nuclear spinodal fragmentation was given in ref. [33].

3.4 Drawbacks of mean-field dynamics

The mean-field models treat the reduced single-particle
phase-space density f(r,p) and they are therefore most
suitable for the calculation of quantities that can be ex-
pressed as expectation values of one-body observables. But
the extraction of more complicated observables (such as
two-body correlations) is problematic. This inherent prob-
lem is particularly evident when fragmentation processes
are considered. For example, any emerging “fragments”
need not have integer particle numbers. Fortunately, this
principal problem is usually unimportant in actual appli-
cations, especially when the observables of interest can be

expressed in terms of moments of the mass distribution
(such as the mean IMF charge).

In this connection, it is important to recognize that al-
though mean-field models treat only the one-body phase-
space density, the stochastic versions generate entire en-
sembles of one-body densities. Therefore, insofar as the
different fragmentations may each be satisfactorily de-
scribed within the one-body framework, stochastic one-
body models may in fact be well suited for multifragmen-
tation processes.

Although quantum statistics is taken into account by
the inclusion of the appropriate Fermi blocking or Bose
enhancement factors in the collision term, the numerical
treatments are generally classical in nature and, conse-
quently, the occupation coefficients will eventually revert
to their classical (Maxwell-Boltzmann) form. (This feature
was discussed in refs. [34,35] for Vlasov dynamics.) Fortu-
nately, because the associated time scale is usually fairly
long, this principal problem is of little practical import
for applications to nuclear collisions. But it does make it
somewhat tricky to use the models to study equilibration
phenomena.

A common problem with existing semi-classical one-
body microscopic models of nuclear dynamics is their fail-
ure to provide an accurate description of the thermal prop-
erties of ordinary nuclei at only moderate excitation. As
a consequence of this and the basically classical nature
of the equations of motion, the de-excitation of produced
prefragments is not well described and to make contact
with experiment it is necessary to switch from the dynami-
cal model to an “afterburner” that treats the de-excitation
of each individual prefragment. This problem is also com-
monly encountered with molecular dynamics.

4 Molecular dynamics

A more direct connection to the observable physical states
is provided by the molecular-dynamics many-body mod-
els. These models have been developed to ever higher levels
of refinement and we can here give only a rough overview
with some illustrative examples.

4.1 Classical molecular dynamics

Generally, classical molecular dynamics (CMD) solves the
classical equation of motion for the positions and momenta
of A particles,

d

dt
ri = {ri,H},

d

dt
pi = {pi,H} , (3)

where the many-body Hamiltonian is of the form

H{rn,pn} =
A

∑

i=1

p2
i

2mi
+

∑

i<j

V (|ri − rj |) . (4)

The nucleon-nucleon potential V (r) (which may depend
on the particle species) generally consists of a short-range
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repulsive part and a long-range attractive part, so that the
resulting matter equation of state (EOS) is of the Van der
Waals type. The work by Lenk and Pandharipande [36,
37] provides a good illustration of this type of model.

The CMD equation of motion is entirely deterministic.
Nevertheless, the collision dynamics has a chaotic char-
acter so that small differences in the initial states may
lead to quite different final states. This feature automat-
ically gives access to many fragmentation channels. Fur-
thermore, while it is hard to justify CMD as a good ap-
proximation for the dynamics of the nuclear many-body
quantum system, CMD does have the virtue of retaining
all the orders of many-body correlations at the classical
level.

Indeed, CMD simulations have provided useful insight
into the general features of fragmenting finite systems,
such as critical phenomena [38], phase evolution [39], the
caloric curve [40] and isoscaling [41]. The character of the
fragment emission has also been elucidated [42]. A partic-
ularly intriguing result was obtained by Dorso et al. [43]
who employed a criterion that considers the binding of
each particle in its host cluster and found that the frag-
ment size distribution may be extracted rather early, al-
ready when the system is still quite dense.

4.2 Quasi-classical molecular dynamics

One of the problems with classical molecular dynamics for
nuclear systems is that the fermion nature of the nucle-
ons cannot readily be incorporated. Indeed, in the ground
state of the classical Hamiltonian H all particles have van-
ishing velocities. This basic feature makes it hard to em-
ulate the most basic features of nuclear systems.

One partial remedy for this problem is the introduction
of a so-called Pauli potential, a momentum-dependent re-
pulsion that serves to emulate the exclusion principle, as
first proposed by Wilets et al. [44,45].

This approach was pursued in more detail by Dorso et
al. [46] with a Gaussian repulsion depending on the phase-
space separation sij , with s2ij = r2

ij/q
2
0 + p2

ij/p
2
0. They

first demonstrated that such a repulsion leads to a reason-
able emulation of the Fermi-Dirac momentum distribution
in thermal equilibrium, over a broad energy range of in-
terest [46]. Furthermore, when augmented by a Lennard-
Jones potential, the model yields a reasonable reproduc-
tion of the nuclear equation of state and hence appears
to be suitable for instructive simulations of nuclear colli-
sions [47]. Indeed, a first application to an initially com-
pressed and heated nucleus allowed the extraction of its
thermodynamic phase evolution, showing that the spin-
odal region was entered, and the resulting fragmentation
exhibited characteristic signs of filamentation [39].

4.3 Quantum molecular dynamics

It is possible to go beyond deterministic molecular dy-
namics by introducing a Pauli-blocked collision term in a
manner similar to what is done in the nuclear Boltzmann

width
constant

R

P
BUU

FMD

QMD

AMD

Fig. 3. Schematic depiction of the free time evolution of the
phase-space distribution of a single nucleon as described by
various models when the initial state is represented by a wave
packet having both spatial and momentum widths. The exact
evolution is indicated by the gray (yellow on-line) area.

(BUU-type) treatments. The resulting model is then tech-
nically identical to the parallel-ensemble treatment of the
nuclear Boltzmann equation with N = 1. But an impor-
tant difference from the usual BUU treatment is that the
fluctuations produced by the stochasticity automatically
develop self-consistently for each individual collision event
and thus allow the emergence of different fragmentation
channels.

In addition, a Gaussian smearing is performed to ob-
tain the spatial density of the nucleons at any point in
time, which is intended to emulate the effect of individual
wave packets. The resulting class of models is usually re-
ferred to as quantum molecular dynamics (QMD) [48–52].
The spatial smearing causes the force acting on each nu-
cleon to be much smoother than the bare nucleon-nucleon
force used in CMD. Furthermore, since the interaction
used does not have a repulsive core the resulting force be-
comes rather similar to that of the mean-field description.

Even though the spatial smearing was introduced to
emulate the effect of individual wave packets, the corre-
sponding effect on the momentum distribution is ignored.
Indeed, the momenta are treated as in CMD, with the ki-
netic energy of a nucleon taken as p2

i /2m without any
zero-point energy, while the momentum distribution is
treated by a random sampling of pi. This treatment can
be regarded as a practical method for including the effect
of the momentum distribution on the time evolution: The
nucleons will have different velocities in different events so
they will be found at different positions in the final states.
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In the simple example of free motion of a single nucleon,
as illustrated in fig. 3, the average over the event ensemble
will yield the correct free-time evolution.

A drawback of this treatment is that the initial nu-
clei, which are obtained by sampling the nucleon mo-
menta pi from a Fermi sphere, are not in their true ground
states in which all nucleons would have vanishing veloci-
ties. While this undesirable feature is of little import dur-
ing the violent part of the collision, it does play a sig-
nificant role for the production of fragments, since their
yield is largely governed by the statistical weights of the
dynamical model.

QMD has been applied mainly to collisions at rela-
tively high energy. In low-energy processes with long time
scales it is difficult to keep the phase-space occupation be-
low unity merely by means of the Pauli suppression in the
two-body collisions since these become increasingly rare.
In an attempt to remedy this problem, some approaches
have employed a Pauli potential [53,54], but there is no
quantum-mechanical foundation for such a force in the
equation of motion. Furthermore, statistical particle emis-
sion from excited fragments cannot be reliably described
by QMD. Therefore the dynamical QMD calculation has
to be stopped at a certain time and the decay of the frag-
ments should be calculated by a statistical decay code.
The long-time simulation for equilibrated systems is be-
yond the limit of applicability of QMD and the result of
such a simulation would not be consistent with quantum
statistics.

QMD simulations of energetic nuclear collisions typi-
cally lead to copious production of fragments whose mul-
tiplicities are often comparable with the experimental
data [55–59]. However, these fragments are extracted at
the end of the violent stage of the collision and are gener-
ally excited by several MeV/nucleon. Therefore, the sub-
sequent decay processes tend to significantly reduce the
IMF yield [60], thus leaving a persistent discrepancy be-
tween the QMD results and the data.

Furthermore, multifragmentation of projectile-like
fragments in peripheral collisions is underestimated more
seriously in some QMD calculations [55,60]. However, us-
ing an algorithm based on the early cluster recognition
method that invokes the single-particle binding energies
in the candidate preclusters and is applicable even at high
densities [43], Gossiaux et al. [61] were able to reproduce
the observed multiplicity. This issue may be related to the
fact that the effective interaction range is quite large in
QMD because of the spatial smearing [61,62].

4.4 Constrained molecular dynamics

The Pauli principle requires that the phase-space den-
sity should not exceed one nucleon per phase-space vol-
ume (2π~)3 for each spin-isospin state in semiclassical
descriptions. The exact treatment of the Pauli principle
(see sects. 4.5 and 4.6) requires significant computational
power for large systems. In order to overcome the compu-
tational difficulty, an approximate implementation of the

Pauli principle has been proposed as constrained molecu-
lar dynamics (CoMD) [63,64]. In this approach, a stochas-
tic process is added to the usual QMD in order to prevent
the violation of the Pauli principle. The process is invoked
when the phase-space density fi around a nucleon i be-
comes greater than 1. The momenta of the nucleon i and
other nucleon(s) are changed as in the two-nucleon scat-
tering so that the Pauli principle fi ≤ 1 is finally satis-
fied after several trials. This is one of the ways to sat-
isfy the Pauli principle, though it is not derived from first
principles.

Due to the stochastic process for the Pauli principle,
the condition fi ≤ 1 remains satisfied when a ground-state
nucleus is propagated for a long time. The properties of
hot nuclei may be better described by CoMD than QMD.

CoMD can reproduce the multifragmentation data at
the incident energy of 35MeV/nucleon [63,64]. The effect
of the stochastic process for the Pauli principle is to reduce
the Pauli-blocking factor for the two-nucleon collisions
when the two nuclei overlap, which results in stronger
stopping and expansion towards instability of multifrag-
mentation. The charge distribution of intermediate-mass
fragments are reasonably reproduced, except for the prob-
lems in the light-particle multiplicities.

4.5 Fermionic molecular dynamics

Fermionic molecular dynamics (FMD) [65–69] is a true
quantum treatment that represents the many-body state
as an antisymmetrized Slater determinant of wave packets
having a Gaussian form,

ϕi(r) ∼ exp
[

−νi(r −Zi)
2
]

. (5)

The wave packet centroids {Zi} and widths {νi} are com-
plex dynamical variables whose equations of motion can
be derived from the time-dependent variational princi-
ple. The nucleons are assumed to move in a mean field
and their spin and isospin degrees of freedom may be in-
cluded. Thus FMD is a constrained form of TDHF with
nonorthogonal single-particle states for which the over-
lap matrix 〈ϕi|ϕj〉 should be properly considered. The de-
rived equation of motion shows that {Z i} and {νi} are
not canonical variables.

Since the FMD wave function is a Slater determinant,
the effective interactions developed for mean-field calcu-
lations are basically applicable to FMD. It is also pos-
sible to employ realistic nuclear forces by means of uni-
tary correlation operators [70,71]. Furthermore, the FMD
wave function provides a reasonable approximate descrip-
tion of ground-state nuclei [67], obtained by minimizing
the energy of the constrained wave function. Properties
such as binding energies and radii can be reproduced well
with a reasonable effective interaction. Contrary to the
molecular-dynamics models discussed above, the energy
minimization yields a unique FMD ground state which is
invariant under the FMD time evolution.

Even though FMD utilizes a quantum wave function,
the dynamics is fully deterministic and the system remains
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a single Slater determinant at all times. This is inadequate
for fragmentation processes, where many different configu-
rations are reachable. This problem could be remedied by
the introduction of direct two-body collisions, which would
bring the description close to Stochastic TDHF (sect. 3).
While this has not yet been done in the full FMD model,
it has been successfully carried out in AMD (sect. 4.6)
where the width parameters {νi} are kept fixed.

Since the many-body state is described by a Slater
determinant, FMD incorporates the Pauli principle per-
fectly, of course. Furthermore, the dynamical growth of
the imaginary part of the width parameter νi produces a
correlation between positions and momenta in the course
of time, thereby ensuring that the single-particle motion
is described correctly for both free motion (see fig. 3) and
for nucleons in a harmonic-oscillator potential.

The deterministic character of FMD has the drawback
that it does not offer a natural description of dynamical
bifurcations. An important example is nucleon emission
which occurs with some probability, while the nucleon re-
mains in the source with the complementary probability.
A reasonable description would yield an increasing width
of the emitted part of the wave packet, while the residual
packet should remain rather compact, something that is
clearly beyond the reach of a single Gaussian wave packet.
Clearly, such branchings could be described by the in-
troduction of suitable stochasticity in the dynamics (see
sects. 4.6 and 4.7).

By enclosing the system in a large harmonic-oscillator
potential well and coupling the system weakly to a virtual
thermometer while examining its long-time behavior, it
has been possible to study the thermodynamic properties
of FMD [72]. The model was shown to exhibit a liquid-gas
phase transition and the associated caloric curves were
extracted. They are similar to those obtained experimen-
tally, with a low-temperature liquid-like region, an inter-
mediate plateau associated with the coexistence region,
and a high-temperature gas-like region. However, the con-
tact with experiment could be firmed up by deriving the
temperature from observed quantities such as isotope ra-
tios and kinetic energies of gaseous nucleons.

There have been several other works based on molec-
ular dynamics with dynamical wave packet widths. It was
found that the inclusion of a dynamical width improves
the agreement with data in some cases, such as fusion
cross-section above the Coulomb barrier [73]. Kiderlen et
al. [74] studied the fragmentation of excited systems. In
response to the initial pressure, the excited system begins
to expand but clusters were not produced even though
Gaussian wave packets with many-body correlations were
employed. When the excited system expands, the widths
of wave packets grow and then, in turn, the interaction
between the packets weakens. The mean field for such a
configuration is very shallow and smooth and there is then
little chance for clusters to appear. This feature conflicts
with the general expectation that clusters should appear
in such situations. Similarly, studies of spinodal instabil-
ity [75] showed that the zero sound is significantly affected

when the width grows large and this spreading of the nu-
cleon wave packet then inhibits cluster formation.

4.6 Antisymmetrized molecular dynamics

Antisymmetrized molecular dynamics (AMD) [76–78] is
similar to FMD in that the system is represented by a
Slater determinant and that a part of the equation of mo-
tion is derived from the time-dependent variational princi-
ple. An important difference from FMD is that stochastic
terms have been added to the equation of motion so that
many configurations can appear through the reaction dy-
namics.

On the other hand, AMD usually treats the width pa-
rameters {νi} of the single-particle wave packets as a con-
stant parameter common to all the nucleons. This sim-
plification reduces the computational burden but limits
the flexibility of the description, compared to the FMD
description, as long as the stochastic extension terms are
ignored. Nevertheless, the constant width parameter guar-
antees that there is no spurious coupling of the internal
motion and the center-of-mass motion of a cluster or a
nucleus. Furthermore, the presence of trajectory branch-
ing due to the stochasticity avoids the creation of spurious
correlations in the wave function. For example, for the nu-
cleon emission process, channels with and without nucleon
emission will not mix in a single AMD wave function.

It is a very attractive feature of AMD that it provides,
with a conventional effective interaction and a reasonable
value of the width parameter, a quite good description of
not only the basic properties of ground-state nuclei but
also many detailed structure features, such as the excita-
tion level spectra of light nuclei [79], with some extensions
such as the parity and angular-momentum projections.

Recent versions of AMD [80–82] seek to take account
of the dynamics of the wave packet width and shape by
splitting the wave packet into components by means of
a stochastic term that is calculated based on the single-
particle motion in the mean field (see fig. 3). It assumes
that the coherence of the single-particle wave function is
lost and it branches into incoherent Gaussian wave packets
at a certain time due to many-body effects. This quantum
branching process makes possible the coexistence of the
single-particle dynamics in the mean field and the frag-
ment formation, which requires spatial localization and
the emergence of many configurations. The resulting ex-
tended AMD may be regarded as a specific case of the
stochastic mean-field equation (sect. 3) with the correla-
tions of the fluctuation δC[f ] designed in such a way that
a Gaussian wave packet appears.

The introduction of two-nucleon collisions is similar
to QMD (sect. 4.3), with some differences described be-
low. The antisymmetrization implies that the wave packet
centroids {Zi} cannot be interpreted as the positions and
momenta of nucleons. Rather, the physical coordinates are
introduced as nonlinear functions of the centroids [77] and
the two-nucleon collisions are performed by using these
physical coordinates. There then appear Pauli-forbidden
phase-space regions into which the physical coordinates
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will never enter, for any values of the centroid variables
{Zi}. These regions are regarded as Pauli-blocked and not
allowed as final state of a collision. Another difference from
QMD is the fact that the physical momentum in AMD is
the momentum centroid of a Gaussian phase-space dis-
tribution, while the momentum variable in QMD usually
represents the definite momentum of a nucleon.

The equilibrium properties of AMD have been studied
by solving the time evolution of a many-nucleon system in
a container for a long time to obtain a microcanonical en-
semble. When the liquid phase, in the form of a nucleus, is
embedded in a nucleon gas of temperature T , the charac-
teristic quantum relation E∗

liq ∼ T 2 was obtained [83] and
the resulting caloric curves show that AMD is consistent
with the liquid-gas phase transition [84–86].

The wave packet branching plays an essential role for
obtaining such physically reasonable equilibrium proper-
ties in AMD. The importance of a stochastic term has also
been demonstrated within the Quantal Langevin model
discussed below (sect. 4.7). On the other hand, as men-
tioned above (sect. 4.5), in FMD the nucleon emission
from a nucleus in the liquid-gas phase coexistence region
is described by a deterministic motion of the nucleon wave
packet with a variable width. The differences between
these approaches have not yet been fully explored.

Although it has not been studied very carefully, the ap-
proximate reproduction of the quantum relation E∗

liq ∼ T 2

suggests that statistical nucleon emission from an excited
fragment may be qualitatively well described in AMD,
while a quantitative description would require that the
model gives the correct value for the nuclear level den-
sity parameter a. If this were indeed the case, then AMD
should be able to describe the statistical decay of frag-
ments produced in collisions if the time evolution could be
calculated for a sufficiently long time. Fortunately, the fi-
nal results do not depend very much on the time at which
the dynamical calculation is connected to the statistical
decay calculation.

When the wave packet branching is included by means
of a stochastic term, the resulting state must be adjusted
to ensure energy conservation. This is achieved by means
of a dissipative term in the equation of motion. Although
this dissipative term has been constructed carefully in or-
der to obtain a reasonable time evolution, its form has not
been derived from a basic principle.

AMD has been successfully applied to fragmentation
reactions, such as central collisions in the energy region
of several tens of MeV/nucleon for light and heavy sys-
tems [80,87]. The fragment isospin composition obtained
in dynamical collisions is consistent with statistical predic-
tions, such as the isoscaling relation and the dependence
on the symmetry energy term of the effective force [88,89].
These results are consistent with the idea that the frag-
ment isospin composition is determined when the density
is low (ρ ≈ 1

2
ρ0), and reflects the symmetry energy of

dilute nuclear matter.

The description of few-body correlations in AMD is
probably rather crude in some situations. In particular,
when the incident energy is high (& 50MeV/nucleon),

the nucleon multiplicity is strongly overestimated, which
is probably because of the too small probability of forming
light clusters from highly excited matter. The correlation
needed to form light clusters should probably be treated
more quantum mechanically than the accidental merging
of randomly distributed wave packets.

4.7 Quantal Langevin dynamics

A more formal development of trajectory branching in
wave packet dynamics has led to the Quantal Langevin
(QL) model [90,91]. The motivation for this work lies in
the fact that the nuclear liquid-gas phase transition differs
significantly from the usual liquid-gas phase transition in
macroscopic matter primarily in the role played by quan-
tum statistics. For usual macroscopic matter, the total
energies are to a good approximation linear functions of
the temperature in both the liquid and gas phases. Thus
the effective number of degrees of freedom is essentially
constant in each phase. In contrast to this familiar situa-
tion, the liquid phase of a nucleus exhibits an increase in
the number of activated degrees of freedom as the tem-
perature is raised. In particular, the excitation energy of
a nucleus at low temperature increases like E∗ = aT 2

(where the level density parameter is a ≈ A/(8MeV)),
which is a typical quantal behavior, while the gas phase is
characterized by the usual classical relation E∗/A = 3

2
T .

The two curves intersect at T ≈ 12MeV, which is much
higher than the transition temperature suggested by ex-
perimental data. This indicates that the quantal statistical
nature of the nuclear system plays an important role for
the phase transition and, presumably, for the associated
nuclear multifragmentation processes.

Part of the reason for the persistent shortcoming of
wave packet dynamics for the description of multifrag-
mentation (see sect. 4.3) may be found in the fact that
the equation of motion for the wave packet centroids is
not consistent with the quantal statistical nature, because
quantum fluctuations inherent in the wave packets are
neglected. The presence of quantum fluctuations is sig-
naled by the fact that a given wave packet is a superpo-
sition of many energy eigenstates. Therefore the fluctua-
tions should be taken into account in such a way that the
different components are properly explored in the course
of time.

This fundamental problem can be clearly brought out
by making a cumulant expansion of the canonical weight
of a given wave packet, at the temperature T = 1/β [92],

lnWβ = ln〈exp(−βĤ)〉 = βH+
1

2
β2σ2

H +O(β3) . (6)

Here H ≡ 〈Ĥ〉 is the usual expectation value of the energy
in the given wave packet and it is evident that the weight
Wβ is affected by its energy spread σH . Truncation of the
cumulant expansion at second order, corresponding to a
Poisson energy distribution in each packet (as a Gaussian
would have) leads to a much improved global description
of the quantum-statistical properties of the many-body
system.
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This approach was extended to dynamical scenarios by
the introduction of a Langevin force emulating the transi-
tions between the wave packets [90,91]. The corresponding
transport process in wave packet space can be described as
a Langevin process and the general form of the associated
transport coefficients was derived. The ensuing diffusive
wave packet evolution exhibits appealing physical proper-
ties, including relaxation towards the appropriate micro-
canonical quantum-statistical equilibrium distribution in
the course of the time evolution. Specific expressions for
the transport coefficients were subsequently derived on the
basis of Fermi’s golden rule and it was verified that they
satisfy the associated fluctuation-dissipation theorem.

This approach is not specific to nuclear dynamics but
has general applicability. For example, it was used to study
the effect of quantum fluctuations on the critical proper-
ties of noble gases [93]. In nuclear physics it has been ap-
plied to hyperfragment formation from Ξ− absorption on
12C where it was found that quantum fluctuations affect
the outcome qualitatively [94,95] and to multifragmenta-
tion [96] which is of particular interest here and will be
briefly summarized below.

The Langevin force enables the wave packet system to
explore its entire energy spectral distribution, rather than
being restricted to its average value. This leads to a much
improved description of the quantum-statistical features.
In particular, the resulting specific heat now exhibits the
characteristic evolution from a quantum fluid towards a
classical gas as a function of temperature [92], in contrast
to the behavior emerging with the usual treatment. Since
a change of a fragment’s specific heat is associated with a
change in its statistical weight, the effect is clearly relevant
for the fragment production problem.

The key new features of the results obtained with
the quantal Langevin model are the occurrence of larger
fluctuations and an enhancement of stable configurations,
such as bound fragments, as a result of the need to take
account of the spectral distortion of the wave packets. The
former feature arises from the fact that the wave packet
parameter of each nucleon is populated according to the
strength of the eigen components for the given energy ex-
pectation value, and therefore the wave packet parameter
can have larger fluctuations than when the energy is fixed
to the expectation value. On the other hand, in order to
project out the appropriate energy component from the
wave packet, it is necessary to take account of its internal
distortion. The combination of these two basic features
then enhances the average IMF multiplicity at the final
stage, especially in central collisions, as was demonstrated
for Au+Au at 100–400MeV/nucleon [96]. While the larger
fluctuations allow the system to explore more configura-
tions and thus enhances the yield of primary fragments,
the latter stabilizes the fragments, since the compensation
for the quantum distortion effectively acts as a cooling
mechanism.

These studies suggest that the underlying quantal na-
ture of the nuclear many-body system may indeed play a
significant role in fragmentation reactions.

5 Concluding remarks

The development of a suitable dynamical description of
fragment formation in nuclear collisions is a daunting task
that poses many interesting challenges and makes contact
with other areas of modern many-body and mesoscopic
physics. We have here given a brief overview of the most
commonly employed models and sought to bring out their
relative merits and shortcomings. Although much progress
has been made over the past couple of decades, we are still
far from having models that are formally well founded,
practically applicable, and sufficiently realistic to be quan-
titatively useful. As our discussion has brought out, the
description of nuclear fragmentation dynamics requires
that proper account be taken of the basic quantal nature
of the system. This requirement renders purely classical
equations of motion inadequate and calls for the develop-
ment of quantal transport theory. Further advances along
this line are likely to be of broad physical interest.
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